
 35

Journal of Science and Technology 12(June 2014): 35-40

EFFECTIVE AND UNINTERRUPTED EXECUTION OF NUMERICAL

INTEGRATION THROUGH COMPUTATIONAL GRID

A.K. Mandal1* and M.D. Hossain2

1Department of Computer Engineering, 2Department of Computer Science and Information Technology Hajee

Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh

Received 23 March 2014, revised 26 May 2014, accepted 16 June 2014

ABSTRACT

Numerical integration is essential for virtually all fields of scientific research. Traditionally, numerical

integration is carried out sequentially in a single computer where trade-off has to be made between computing

time and precision of numerical value. For reduction of computing time and betterment of precision, numerical

integration problems may require a significant amount of computational effort; in this situation, using

distributed computing to share task might be a solution. Therefore, this project set up a computational grid based

on the Alchemi middleware and use multiple Simpson’s 1/3 rules with a sample numerical integral. For

uninterrupted execution, fault-tolerance method is also implemented. Results show that this approach reduces

computing of numerical integration a significant amount with ensuring better precession.

Key words: Alchemi middleware, fault-tolerance, grid computing, numerical integration, Simpson’s 1/3 rules

INTRODUCTION

For many engineering problems require the

evaluation of the integral
b

a

xfI)(frequently,

where)(xf is called the integrand, a= lower limit

of integration, b= upper limit of integration.

However, the function f(x) may be a complicated

continuous function that is difficult or impossible to

integrate in the closed form. In some cases, f(x) may

not have a known analytical form; it may be known

only in a tabular form (Neumaier 2001). The limits

of integration may be infinite or the function f(x) may

be discontinuous or the function may become infinite

at certain points in the interval a to b. In all these

cases, the integral can be evaluated only numerically.

To solve the problems numerically, there are many

algorithms. In this project, the Multiple-Application

Simpson's 1/3 rule (Chapra and Canale 2001) is used

as this equation is effective in many cases, though it

requires a lot of calculation. Besides, when scientific

research demands exact result in many significant

digit, number of segments of the Multiple-

Application Simpson's 1/3 rule have to be increased

in many times. This indicates much more calculation,

and employment of one processing unit takes huge

time to complete the task. This computation time can

be reduced significantly if distributed computing

resources are used.

Grid comuting is a model of distributed computing to

create the illusion of a simple yet large and powerful

self managing virutal computer out of a large

collection of connected heterogenous systems

sharing various combinations of resources (Broberg

et.al 2008). Another key technology in the

development of grid networks is the set of

middleware applications that programming

environment required to construct desktop grids and

develop grid applications. Among them, Alchemi

(Luther et al. 2005) is a .NET-based framework that

provides the runtime machinery for building a grid.

In our application we use this framework in windows

platform. A particular numerical integration is

distributed and executed parallely by the help of

manager and executors of this framework

respectively. Since any problems of manager or

executors might hamper the performance of

numerical integration, we suggest folt tolerance

approach so as to uninterruted execution of

numerical integration can be ensured.

MATERIALS AND METHODS

Alchemi: Alchemi is a .NET-based framework that

provides the runtime machinery and programming

*Corresponding author: Ashis Kumar Mandal , Department of CEN, Hajee Mohammad Danesh Science and Technology University,

Dinajpur 5200, Bangladesh , Cell Phone: 88-01912136021, E-mail:ashis@hstu.ac.bd

 36

environment required to construct desktop grids and

develop grid applications (Broberg et.al 2008). There

are four types of distributed components (nodes)

involved in the construction of Alchemi grids

including manager, executor, owner, and cross

platform manager. Owner node generates application

and creates threads which are submitted in manager

node. Manager node provides services such as

storing thread in a pool and distributes threads to the

executor. Executor accepts threads from the manager

and executes them and sends result back to the

manager node. After finishing all threads, the

manager aggregates them and sends ultimate result to

the owner node.

We choose Alchemi as the framework for building

the computational grid because it is open source that

can be viewed as Internet-based clustering of

windows-based desktop computer. Besides, users can

develop, execute and monitor grid applications using

the .NET API and tools which are part of the

Alchemi SDK. Alchemi offers a powerful grid thread

programming model which makes it very easy to

develop grid applications.

Simpson's 1/3 rule numerical integration:

Simpson’s 1/3 rule (Chapra and Canale 2001) is used

to estimate the value of a definite integral. Here, the

interval [a, b] is broken into 2 segments, the segment

width
2

ab
h

 . The formula for the Simpson's 1/3

rule is displayed in following equation 1.

)()(4)(
3

210 xfxfxf
h

I

……………. (1)

Simpson's rule is improved by dividing the

integration interval into a number of segments of

equal width which is called multiple-Application

Simpson's 1/3 rule. So, overall result of integration is

as follows (Chapra and Canale 2001):

n

ab
h

 , where n=segments number and

)()(2)(4)(
3

2

...6,4,2

1

...5,3,1

0 n

n

j

j

n

i

i xfxfxfxf
h

I

 …………….. (2)

This numerical integration equation is certainly a

subject that can be executed in distributed

computing. That is, this equation lends itself to

parallel computation because it can be easily divided

into smaller problems, such that these sub-problems

are independent of each other’s results.

 Related works: Many integration packages have

been implemented based on different algorithms and

computer architectures. Some are sequential (Yuasa

et al. 2006) programs for standalone computers; the

others are parallel programs that are executed by

multiple processing elements such as those of a

cluster (Cools and Laurie 1997). One work, such as

distributed numerical integration, is proposed in

(Doncker and Gupta 1994) where a software module

named ParInt is developed for multivariate numerical

integration. Similarly, Kaugars et al. (2003) describes

a distributed numerical integration paradigm using

web service where they propose an XML data format

for the exchange of integration related data among

different computing unit.

Application modeling: Before implementing our

numerical integration application in grid, a grid

system have to be constructed using Alchemi.Net

grid framework. Now procedure to model and

implimentation are described as follows:

 Specify the integration for which solution

have to be calculated

 Now divide the total integral into sub-

integrals of equal range

 Implement Multiple-Application Simson’s

1/3 Rules for all sub-integrals

 Execute each sub-integral in particular

executor of Alchemi.Net grid system

 Finally, total integral is calculated by taking

all the results of sub-integrals in manager of

Alchemi.Net grid

This test application basically use the concept of

multithreading where the large size job is divided

into some small sub-jobs. Here these sub-jobs are

known as sub-integrals. Manager basically creates a

thread for each sub-integral and migrates these

threads into various resources (executors). Each

executor accepts threads as input and computes its

assigned part properly and submits the result toward

the manager. Manager receives all results as input

and provides appropriate result. Manager has a

scheduler to control overall threads. The following

figure 1 is simple flow diagram for a manager and

two executors.

Mandal and Hossain / Effective and uninterrupted execution

 37

During the distributed execution of numerical

integration, some failures may happen in the grid

environment such as failure of the executor node,

failure of the grid manager nodes or both. For

uninterrupted execution, following methods also be

used.

Failure of the executor and recovery method: If a

thread is scheduled on an executor and due to some

reasons, the executor crashes, the thread running on

this executor also crashes. In such case, the manager

reschedules this thread on another executor but it

does not keep any track of the percentage of the work

that has already been done. For betterment of

computing, a file based grid thread was implemented

to overcome this executor failure problem (Sharma et

al. 2011). Here the file keeps track of the last

resultant values of the thread and the executor is

responsible for saving these values into the file that is

on manager. Whenever a crashed thread is

rescheduled on different executor, the manager node

will extract the values form the file and will pass it to

the thread so that it can resume its operations.

Failure of the manager and recovery method:

Failure of the manager may happen if the manager

gets disconnected from the network or if the manager

gets crashed for any reason. Under this circumstance,

all the executors registered with the failed manger

will stop executing, and the whole system will come

to halt. For uninterrupted execution, we need backup

manager. This can be achieved by secondary

manager at one of the executor (Bikas et al. 2008).

Usually, an executor can register itself only with one

manager. If the manager fails, secondary manager

notify all executors to reregister with the new

manager. This new Alchemi manager can continue

functioning from the point of failure providing

previous manager stores all required information in a

file and this file needs to be replicated to that

secondary manger. Periodic updating of file is

required so as to maintain the consistency of the

system.

RESULTS AND DISCUSSION

 Evaluation test setup: The test bed of this Alchemi

grid computing for numeric integration consisted of

five Executors of Pentium (R) 4 CPU 2.26GHz

desktop computers with 512MB physical memory

running Windows XP Professional operating system.

As for the designated Alchemi manager is set on

desktop computer of Pentium (R) 4 CPU 2.26GHz

machines with 512MB physical memory also

running Windows XP Professional. All the six

computers are linked together with a switch to form

Local Area Network as grid environment. With this

evaluation set up, one of the main assumptions is that

every connected computer (executors) will have

equal chance of receiving a thread task from

manager.

We used the following integral to evaluate the

procedures described above

dxx

1

0

2 1 . We compute it with ε<0.00001

There are two parts in evaluating the performance of

numerical integration in grid environment. System

using above numerical integration application and

execution time was measured at the elapsed clock

time for the integral processing to complete on the

Manager

Create,
distribute and
re -assemble
threads

output
Resource
(Executor #m)
Execute some
threads

Resource
(Executor #n)
Execute some
threads

input input

output

Jobs

o
u

tp
u

t

In
p

u
t

Figure 1. A flow diagram of application execution.

J. Sci. Technol. (Dinajpur) 12(2014): 35-40

 38

manager node. This application of the Alchemi grid

thread model system is based on different number of

executors performing the task with different number

of segments and different number of split threads set.

Increasing executors with different segment size:

First part of the test is to calculate the integration

with increasing number of executors at different

segments maintaining at 10 threads to compare and

observed the affect execution time. Figure 2 shows

the time taken to perform 10 threads with different

amount of segments size against different number of

executors.

Different segment size(h),Same thread size of 10

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6

Number of Executors

T
im

e
(s

e
c
o

d
e
s
)

h=1/1000000

h=1/5000000

h=1/10000000

h=1/20000000

Figure 2. Performances of varying numbers of

executors enabled with different segment size with

same thread size.

Evaluation on different segment size and its

observation result: Based on the evaluation outcome

from Figure 2 on different size of segments

performance on the Alchemi grid system, it is

observed in showing significance improvement in

execution time with increasing number of executors

enabled for the task. The amount of processing time

has improved by almost half when using 2 executors

as compare to 1 executor. On the whole evaluation

on segment number with 5 executors can shorten

execution time by up to above 80% as compare to

single computer processing as shown in Table 1.

Increasing executors at different thread size: The

second part of the evaluation test involves in

increasing up to 5 executors performing with

different workloads being sliced into thread size of

10, 25, 45, 80 and 100. In order to observe the affect

on execution time, same segment number of 2000000

is maintained. Figure 3 shows the time taken to

complete the various numbers of threads size against

varying numbers of executors enabled.

Evaluation on different thread size and its

observation result: Figure 3 shows the processing

time of different workloads of thread size over the

grid system with increase number of executors. The

resulting trend for this is similar to Figure 2 but

Figure 3 shows obvious improvement in the

Table 1. Comparison for number of segments executions time efficiency improvement

No. of

segments (n)

Stand alone

computer

execution time

(s)

2 Executors grid system 5 Executors grid system

Execution

time (s)

Percentage

improve (%)

Execution

time (s)

Percentage

improve (%)

h=1/1000000 4.421 3.563 19.40 1.02 77

h=1/5000000 16.703 8.546 49 3.25 81

h=1/10000000 30.923 16.395 47 4.73 85

h=1/20000000 67 31.609 53 8.751 87

Mandal and Hossain / Effective and uninterrupted execution

 39

Segment size h=1/2000000, different number of

threads

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6
Number of executors

T
im

e
(s

e
c
o

n
d

s
)

10 threads

25 threads

45 threads

80 threads

100 threads

Figure 3. Performances of varying numbers of

executors enabled with same number of segment and

different thread size.

rendering processing time over the grid network. At

low workload of 10 threads for this case, there is

little difference between the execution time with

different number of executors. This is so as the total

overhead involved in managing the distribution of

the thread task is proportion to the actual

computation time. Therefore, if the number of

executors continues to increase, there will have no

further significant decrease in the computational time

on the workload.

On the other hand with increasing thread size,

significant different in the execution time can be

observed with more executors enable to handle the

grid job. Of course, looking at the first two-Alchemi

executors, there will be obvious decrease in

computational time of up to 50% with the increase in

workloads thread size. Table 2 shows the

improvement in the execution time for 2 executors is

50% and with 5 executors efficiency can improve up

to above 80% as compare to one executor over the

grid system.

Table 2. Comparison for threads size executions time efficiency improvement

Thread size Standalone

computer

execution time(s)

2 Executors grid system 5 Executors grid system

Execution

time(s)

Percentage

improve (%)

Execution

time(s)

Percentage

improve (%)

10 8.781 5.01 42 1.89 78.4

25 19.52 10.19 48 3.4 83

45 33.94 17.23 49 4.56 87

80 60 27.55 54 9.25 85

100 75 36.4 51 10.02 87

Some general observations: While conducting the

test some general observations are observed and as

followed:

(a) Different processor speed desktop computer

attached to the LAN network will affect the

efficiency of numerical integration. Even the LAN

network might cause some delay in transferring task

between computers.

(b) The Alchemi scheduler is able to randomly slice

and send threads task to all connected grid

computers, which mean it does not required to

calculate the numerical integration in any order

sequence.

 (c) The efficiency of the grid system depends greatly

on the complexity of the task and the threads size

allocated for the integral process. Of course, more

slices of the workload mean more threads required to

be transmitted over the network with more overheads

attached to each thread to and flow the grid system;

hence, this method increase the processing time.

 CONCLUSION

Numerical integration is used extensively in

engineering, sciences, economics, technology and

other fields. As intensive computing is required for

executing this integration while ensuring better

precession, we present one-dimensional numerical

integration scheme in computational grid to reduce

executing times. In this paper we develop this grid

environment by Alchemi framework. At the same

time, we consider fault-tolerance methods for

uninterrupted execution of numerical integration.

Further enhancement could be achieved by

establishment of cross platform global grid together

with multidimensional numerical integration.

J. Sci. Technol. (Dinajpur) 12(2014): 35-40

 40

REFERENCES

Bikas A, Hussain A, Shoeb M, Hasan M and Rabbi

MF. 2008. File based GRID thread

implementation in the. NET-based Alchemi

framework. 12th International Multitopic

Conference, Pakistan . pp. 468-472.

Broberg J, Venugopal S and Buyya R. 2008. Market-

oriented grids and utility computing: The

state-of-the-art and future directions.

Journal of Grid Computing. 6:255-276.

Chapra SC and Canale R. 2001. Numerical Methods

for Engineers: With Software and

Programming Applications. McGraw-Hill

Higher Education.

Cools R, Pluym L and Laurie D. 1997. Algorithm

764: Cubpack++: a C++ package for

automatic two-dimensional cubature. ACM

Trans. Math. Softw. 23:1-15.

Doncker E and Gupta A. 1994. Distributed adaptive

integration, algorithms and analysis.

Proceedings of Transputers. pp. 266-277.

Kaugars K and Doncker E. 2003. Massive scale

distributed numerical integration using web

service. The Hawaii International

Conference on Computer Sciences.

Luther A, Buyya R, Ranjan R and Venugopal S.

2005. Alchemi: A. NET-based Enterprise

Grid Computing System. International

Conference on Internet Computing. pp. 269-

278.

Neumaier A. 2001. Introduction to Numerical

Analysis. Cambridge University Press.

Sharma V, Vardhan M, Mishra S and Singh KD.

2011. A generalized approach for fault

tolerance and load based scheduling of

threads in Alchemi. Net. The Second

International Conference on Cloud

Computing, GRIDs, and Virtualization. pp.

211-216.

Yuasa F, Tobimatsu K and Kawabata S. 2006.

Recent developments in parallelization of

the multidimensional integration package

 DICE. Nuclear Instruments and Methods in Physics

Research Section A: Accelerators,

Spectrometers, Detectors and Associated

Equipment. 559:306-309.

Mandal and Hossain/ Effective and uninterrupted execution

